
Chapter �¯ Linear Model Selection ê
Regularization
In the regression setting° the standard linear model is commonly used to describe the relaÅ
tionship between a response  and a set of variables µ

The linear model has distinct advantages in terms of inference and is often surprisingly
competitive for predictionµ How can it be improved¶

We can yield both better prediction accuracy and model interpretability¯

quantitative response
-

Y= pot pix, t . . . t p,Xp t E

typically fit using least square

Upcoming : more general model ( non - linear).

-

replace least squares with alternative filthy procedures.

- -

-predictienacouracy : If the true relationship is I linear, least squares will
have low bias
-

•

If h s> p⇒ also lowvariance ⇒ perform well on test data !

If n not much larger than p ⇒ high variability ⇒ poor performance on testdata
.

If n s p ⇒ least squares no longer has a unique solution ⇒ variance = no ⇒ can 't use this
atall !

[
e without adding too much bias

.

goat : reduce variance
predictor

-modelinterpretabih.ly : often many variables in a regression model are not infact
associated w/ the response .

By removing them ( set Fi = o), he could obtain a more easily interpretable model.

Note : least square will hardly ever fi -0
⇒ need variable selection
-

Same ideas apply to logistic regression .



2

1 Subset Selection
We consider methods for selecting subsets of predictorsµ

1µ1 Best Subset

To perform best subset selection° we {t a separate least squares regression for each possiÅ
ble combination of the  predictorsµ

Algorithm¯

We can perform something similar with logistic regressionµ

1µ2 Stepwise Selection

For computational reasons° best subset selection cannot be performed for very large µ

Stepwise selection is a computationally ef{cient procedure that considers a much smaller
subset of modelsµ

Forward Stepwise Selection¯

Selection

ett 'Models w/ exactly 2 predictors⇒ ( Pa) = PlP models .

P. let Mo denote null model : no predictors
2 . for K - I, . . . , p

(a) Fit all f fo) models that contain k predictors
$4 Pick best of those, call it Mk .

"Best " is defined by IRSSC9A) .
3
.
Select a single best model from Mo, Mi , - ., Mp by using cvgcp.tk/BlC#adjustedR~

more later.

why can't we use R
' ( Rss) to choose our model in step 3 . ?

adding predictors will always 9 R
' !

why might we not want to do this procedure at all? Computation. filthy 2P models . P -- lo I 1000models .

→
impossible
w/ p 290

.

Best subset may also suffer for p target
"
w/ large search space

might happen upon a model that works will on training data. that performs poorly on test data

⇒ high variability of coefs t overfilthy can occur
.

Se

Mo
Eff start w/ no predictors and add predictors oneatahhe until
-
V

all predictors are in the model. Choose the " best" from these.
Mp

M
.
let Mo denote the hull model

- no predictors
2. for K-- O, . . ., p - a

(a) Consider all p -k models that augment the predictors in Mk w/ I additional

(b) Choose the best among These
p
-K and call it uh, ( f R2

,
d Rss)

,

predictor

3 . Select a single best model from Mo, - -s Up using CV error, Cp , A 14 BIC! adjustedRT

Now we fit It 9%4 - k) = It PCP models .



�µ� Choosing the Optimal Model �

Backward Stepwise Selection¯

Neither forward nor backwards stepwise selection are guaranteed to {nd the best model
containing a subset of the  predictorsµ

�µ� Choosing the Optimal Model

 

AIC ê BIC 

Adjusted  

Validation and CrossÅValidation

MP
peg in w/ full model and take predictors away oneatathe
until we get to the null model . Choose the best one along thatpath.M°

He let Mp denote the full model - contains all p predictors
2 . for k =p, pal, . . . , d

la) consider all f models that contain
all but I of the predictors in Mk (K- I predictors).

(b) Choose the best among them and call it Mie-i f TR
'

,
d RSS).

3 , select the single best model from Mo , . - ., Mp using CV error , Atc/Bic, or adjusted
R?

greedysearch .#
Seem to get decent results.

forward selection can be used when p>n (but only up to n - I predictors included - not p ! ) .

Best subset
,
forward selection, backward selection all need a way to pick best model -

"IIF:&:
pigs g pi are proxies for training error ⇒ not good estimates of testerman .then④ estimate this directly on

② adjust training error to.

② I ÷(RSS t 2dg £#estimate of variance of E from full model. model size.
*

#predictors
in subset model

add penalty to training error RNI to adjust for
under estimate of test errorpropertied

qq.my,} a, da
, Cpg ( da.. in

meeee y lowest value).

②e- maximum likelihood fit ( linear model fit w/ least squares ,

this is the same),

AIC = ÷ ( RSS t 21^64.
BIC I ¥ (RSS t login)da) .

choose model w/ low BIC . Since leg Ch ) > 2 for n > 7-⇒ heavier penalty on models w/many
variables
⇒ result in smaller models .

② ( least squares models).

pi = l - Rf↳ always 9 as d9

Adj R? I - Aston
Tss/ (n-D

①
choose model wi highest Adj . R?
-

w/ CV or validation method and choose the model w/ lowest esthetic test
- Directly estimate test error

error.

- Very general (can be used for any
model) even when its not clear how many

"predictors
"
ve 're

talking
about

.

No u have fast computers, CV is preferred.
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� Shrinkage Methods
The subset selection methods involve using least squares to {t a linear model that contains
a subset of the predictorsµ As an alternative° we can {t a model with all  predictors using
a technique that constrains ÁregularizesÂ the estimatesµ

Shrinking the coef{cient estimates can signi{cantly reduce their variance²

�µ� Ridge Regression

Recall that the least squares {tting procedure estimates  using values that
minimize

Ridge Regression is similar to least squares° except that the coef{cients are estimated by
minimizing

The tuning parameter  serves to control the impact on the regression parametersµ

-

f-

-

↳ shrink estimates towards zero

A-

help us to avoid over fitting .

Rss = E. fyi - po - I. B. xiii
residual sum of squares .

^
R

B

rm.tt#ItwetwanFu9e:oIiIeaneahi::is.p.k
.

p .

the intercept f wear valve of response where÷! Yi - fo-§,

Pjxij )
-
t X¥, p: I RSS t 211$11 a sci. = . . .

-
- Kip -- o )

-

IFZO
penalization parameter
choose by tuning (separately frm te frothy

procedure) .

trade -off 2 criteria : minimize Rss to fit data well

minimize X.⇐ Pj shrinkage penalty - small when fj close to zero ⇒
shrink estimates towards

zero
.

-

when 7=0 penalty has no effect and ridge regression = leastsquares.

As a→ x , impact of
atte penalty grows and BR→o.

Ridge regression will produce a different setof coefficients for each penalty a [ fry]
Selecting a good x is critical ! How to choose?



2µ1 Ridge Regression 5

The standard least squares coef{cient estimates are scale invariantµ

In contrast° the ridge regression coef{cients  can change substantially when multiplying
a given predictor by a constantµ

Therefore° it is best to apply ridge regression after standardizing the predictors so that
they are on the same scale:

Multiply x; by a constant c , leads to a scaling of least squares estimates by a factor of to

⇒ regardless of how gith predictor
is scaled

,
xjpj will remain the same .

TTscale)

e.g . Say we have an income variable in ① dollars or ② thousands of dollars.

① = 1000×20

due to the sum of squared coef term
,
this scaling will not simply cause the coefficient

estimate to change - by a factor of 1000.

⇒ Xjfbjn, depends net only on 7 , but also on the scale of x;
Imay even depend on scaling of the other predictors ! )

i.e. hare standard deviation of 1.

Ii; =m-a- E.Gaj -Isi
Krider

.
of the jt predictor

* ④ standardize data

② tune model to choose 7

③ fit ridge regression 4 chosen 7
,



� � Shrinkage Methods

Whw does ridge regression uork¶

Because of the bias - variance trade -off !

As 79 , flexibility of the ridge regression fit I ⇒ I variance ad 9 bias.

iance t bias
^

on

"""

-

-J
"""

¥
:

In situations where the relationship between response and predictors is re linear

least squares will have low bias
-

.

when p
almost as large an n ⇒ least squares hashighvaiabilitr .

&
if p - n

least squares doesn't even
have a solution

↳
ridge regression can still perform well in these scenarios by trading off a small
amount of bias for a decrease in variance .

⇒ ridge regression works best in high variance scenarios
.

Also
Lost advantage over subset selection methods (sort of)

bio for a fixed 7 , only fit t wheat ( very fast model
to fit) .

Ridge regression improves ipnredictire performance.

Does it also help us w/ interpretation ? No !



2µ2 The Lasso 7

2µ2 The Lasso

Ridge regression does have one obvious disadvantageµ

This may not be a problem for prediction accuracy, but it could be a challenge for model
interpretation when  is very largeµ

The lasso is an alternative that overcomes this disadvantageµ The lasso coef{cients 
minimize

As with ridge regression, the lasso shrinks the coef{cient estimates towards zeroµ

As a result, lasso models are generally easier to interpretµ

Unlike best sabat
,
forward orbackward sleetin (generally a model w/ a subset of variables),

ridge regression will include all p variables oh the final model .

penalty 7,1
,

PT will shrink Pj→ 0 but Pj f- 0 ( unless x -- o) !

(noise)

we will always have all variables in the model
,
whether there is a tune relationship or hot.

Least
absolute -
asydrinskeaertin reign ,

" Bdr
opera

"

E. fyi - po- ftp.xijT+ 1¥! Pil = Rss t 7€! Pil-
ti penalty

-

bi penalty also has the effect of forcing some coefficients to be exactly zero
when 7 is sufficiently large !

⇒ much like subset selection methods
,
lasso also performs

!

The lasso yields "

sparse models
"
- models w/ only a subset of the variables .

Again , dining 7 is critical .



� � Shrinkage Methods

Why does the lasso result in estimates that are exactly equal to zero but ridge regression
does not¶ One can show that the lasso and ridge regression coef{cient estimates solve the
following problems

In other words° when we perform the lasso we are trying to {nd the set of coef{cient estiÅ
mates that lead to the smalled RSS° subject to the contraint that there is a budget  for
how large  can beµ

lasso : minimizes susie 't to Eh}?I÷!÷e÷!?Ridge : minimize RSS subject to ¥
,

pi Es optimization
problems .

con 9ham ts

St

when s is large , this is not much of a constraint ⇒ aeff
.
estimates can be large

But why does lasso result in coefficient estimates exactly equal to zero (ridge
does not) ?
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2.3 Tuning

We still need a mechanism by which we can determine which of the models under considÅ
eration is ÌbestÍ.

For both the lasso and ridge regression, we need to select  (or the budget ).

How?


