
Chapter 6: Linear Model Selection &Chapter 6: Linear Model Selection &
RegularizationRegularization
In the regression setting, the standard linear model is commonly used to describe the
relationship between a response  and a set of variables .

The linear model has distinct advantages in terms of inference and is often surprisingly
competitive for prediction. How can it be improved?

We can yield both better prediction accuracy and model interpretability:

Y X1, … , Xp

&-

Y = Bo + B,
X, t...+ BpXp + E

typically fit wr least squares.

Upcoming : more flexible models (non-linear).

-

replace least squares of alternative fitting procedures.

-

-

GredictionacatayIftheratmshipisliners last squares
will have low.

But ifa not much larger than
p

=> higher variability =>
poor performance.

If p > n : no longer a unique solution => variance = => cannot be used at all !

Goal : reduce variance without adding too much bias.

-deinterpretabilityafter myvariables i legressivehattassonated
e e

Note : least squares
will hardly ever result in Bi=0.

=> need variableselection
.

Same ideas apply to logistic regression·
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11 Subset Selection Subset Selection
We consider methods for selecting subsets of predictors.

1.11.1 Best Subset Best Subset

To perform best subset selection, we fit a separate least squares regression for each
possible combination of the  predictors.

Algorithm:

We can perform something similar with logistic regression.

1.21.2 Stepwise Selection Stepwise Selection

For computational reasons, best subset selection cannot be performed for very large .

Stepwise selection is a computationally efficient procedure that considers a much smaller
subset of models.

Forward Stepwise Selection:

p

p

-

Selection

-modds / exactly 2 predictors, etc.

10 ht who denote the null model - no predictors.
2. For k = 1

,
-- , p

(a) Fit all (i) models that contain 1 predictors .

(b) Pick the best of these Kall Mp) · Best is defined by dRSs(& R2).

SchetasigbuttmadlfaMcMigraine.
p

= 10
more later

Fifty 20 models. => 1000
models

.

* impossible ef
p240.

Best subset may
also suffer when plage because of a large search space can find models

that work well on training data but poorly on test data high variability's over fitting can occur.

-

start of no predictors and add predictors one at a time until all predictors
are in the model . Choose the "best" from these.

1 : Let Modenote the hull model-no predictors.

2. For K = 0,
, . -, p-1

(a) consider all p-x models that augment the predictors in Mi W) 1 additional predictor.

(b) choose the best among p-l and call it Mr+ J & R3
,
LRSS)

30 Select a single best model from Mo
, .., Mp using CV eror, Cp , AK/BKC, or adjusted R?

Now he fit It Sp-1) = 1 + P models.
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Backward Stepwise Selection:

Neither forward nor backwards stepwise selection are guaranteed to find the best model
containing a subset of the  predictors.

1.1.33 Choosing the Optimal Model Choosing the Optimal Model

 

AIC & BIC 

Adjusted  

Validation and Cross-Validation

p

Cp

R2

Begin Wi full model and take predictors away one ata

time until you get tohull .
Choose from sequence.

Similiar algorithm to forwards Steprise selection.

* -

forward selection can be used when pan (but only up to n-1 predictors ,
not

p ! ).

Best subset, forward
,

backward selection require a wayto pick the "best model" -

according to test error.

RSS & R2 are proxies for training error =
not good estimates of terror.

↳ either Destinate this directly or

② = + (RSS + 2d(2) ② adjust training errors for model
↑ estimate of variance of E (full model) .

in subset model

↑
#predictors size .

adds a penalty to training error (RSS) to adjust for underestimation of test error.

choose model w/ lowest value·

proportional ② O can compute for maximum likelihood fits.

=>same Alc=(RSS + 2d2)
answer. ] Since loy(n) >2 for a 77 => heavier penalty on modelsa

BIC = nt(RSS + grid2) many variables

=> results in smaller models .

Choose model w/ lowest B12.

② Conly for least squares).

RE = 1- alwaysasa

Adj R2 =1-
choose model w/ highest adj . R?

⑪
-

Directly estimate best error /Validation or CV and choose model / lowest estimated error.

-

Very general Lambe used for any model) even when it not clear how may "predictors" we have

Now havefast computers => these are preferred.
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22 Shrinkage Methods Shrinkage Methods
The subset selection methods involve using least squares to fit a linear model that contains
a subset of the predictors. As an alternative, we can fit a model with all  predictors using
a technique that constrains (regularizes) the estimates.

Shrinking the coefficient estimates can significantly reduce their variance!

2.12.1 Ridge Regression Ridge Regression

Recall that the least squares fitting procedure estimates  using values that
minimize

Ridge Regression is similar to least squares, except that the coefficients are estimated by
minimizing

The tuning parameter  serves to control the impact on the regression parameters.

p

β1, … , βp

λ

-

↳ shrinks estimates towards Zero
.

Thelpsus to avoid overfitting.

RSS= lyi-Bo-E
residual

sum of squares.

BR

- ↓ notewe donotpenalizeanationships

lyi-BojRSSettetpt(navaheosea
I

& To tuning parameter /determined separately of the

fitting procedure).

trades off2criteria : minimize RSS to fitthe data well.

-B shrinkage penalty small when close toZero Shrinks estimates towards Era

When X = 0 penalty has no effect and ridge regression = least squares.

As X- > X, impact of penalty grows and BR -0 .

Ridge regression will produce a different set of beficients for each penalty - (i)

Selecting a good X is critical ! How to choose ? CV !
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The standard least squares coefficient estimates are scale invariant.

In contrast, the ridge regression coefficients  can change substantially when
multiplying a given predictor by a constant.

Therefore, it is best to apply ridge regression after standardizing the predictors so that
they are on the same scale:

β̂
R

λ

Multiplying Xj by a constant c leads to a scaling of least squares
cofficients by a factor of.

=> regardless of how X; is scaled
, Xj B will remain the same.

e . g. say we have an income variable in Dthurs and & thousands of dollars
.

0 =Q + 1000

due to the sum of squared ref,
tem

,
this will simply scale the beficient estimate by a factor of 1000.

=> XBj depends not only on X but als on the scaling of Xi.

(may even depend on scaling of other predictors ! ).

-e
.

have standard deviation of 1.

=
Gij - 2

,
)
~

estimate of St.

deviation ofth predictor.

in recipe .

O standardize
data

Workflow
using ste-

② tune model to choosea via CV.

③ fit ridge regression model.
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Why does ridge regression work?

Because of the bias-variance tradeoff !

As 14 ,
the flexibility of the ridge regressiond => d variance and & bias.

M mSE =
variance +bins

tinV
X

In situations where relationship between response
and predictors isa linear,

least squares will have low bins.
-

When
p

almost as large as n => least squares
has high variability !

L if p > n least squares
doesn't even have a unique solution.

f
ridge regression can still perfomwell in these scenarios by trading off a small amont of biss

for a decrease in variance.

=> Ridge works best in high variance scenarios.

Aso
cost advantage over subset selection.

bic for a fixed X
, only fit me model . (very fast model to fit).

Ridge improves predictive performance.

Does it also help us W/ interpretation? No.
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2.2.22 The Lasso The Lasso

Ridge regression does have one obvious disadvantage.

This may not be a problem for prediction accuracy, but it could be a challenge for model
interpretation when  is very large.

The lasso is an alternative that overcomes this disadvantage. The lasso coefficients 
minimize

As with ridge regression, the lasso shrinks the coefficient estimates towards zero.

As a result, lasso models are generally easier to interpret.

p

β̂
L

λ

Unlike subset selection methods (generally select mode of asubset of variables),
ridge regression will include all p variables in thefinal model.

penalty &EB will shrink
Bj- 0 but Bj0 (unles x = 1) !

-
-

-

We will alrage have all variables in model
,

whether they have a relationship u/ response Y or not.

eastutea
Senior mellBe,norm.

&Si-Bo-Bi+B = RSS +X
u

e , penalty

Cridge uses 12 penalty)

1
, penalty also has the effect offringsomet

teregularization
hen >is sufficiently

large !

=> performs variableselection !

The lasso yields sparse models - metes aonly a subset of the variables.

Again , selecting a good X is mined .
=> CV.
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Why does the lasso result in estimates that are exactly equal to zero but ridge regression
does not? One can show that the lasso and ridge regression coefficient estimates solve the
following problems

In other words, when we perform the lasso we are trying to find the set of coefficient
estimates that lead to the smalled RSS, subject to the contraint that there is a budget  for
how large  can be.

s

∑p

j=1 |βj|

lasso : minimized-porc) subjectefant
.

Ba--, Bp

↳tridge : minimizedbyi-Boject
3 unstrainedait

constraints.

St

WhenSis very large ,
this is not much of a constrain=>> Coef

.
estimates can be large.

similar to ridge.

But why does the lasso result in coefficiat estimates exactly equel to Zero?

Let p=2 contours of

~ ContoursaXRSS
Ban Ban

⑧g· ⑳
B +BIS 11, 1 + 1921[S

Solution to lasso or ridge is first point where RSS surface contacts constraint region.

Ridge has a circular constraint region => an shap points => intersection can occur anywhere

lasso has corners on each axis => RSS surface often have first contact at an axis -> one of the cfficients will

equl Evo
-

If we believe there are predictors that do not have a relationshipw response (wejust don't know which),

lasso will perform better (bias + various) ·

If not (everything is important) ,
ridge will perform better.
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2.2.33 Tuning Tuning

We still need a mechanism by which we can determine which of the models under
consideration is “best”.

For both the lasso and ridge regression, we need to select  (or the budget ).

How?

λ s

For subset Cp, AlCIBIC
, adjusted R2

,
CV error

- =

CV.

peralizationparameter.

predictors
⑧ scale the data to have st .

dev
. =1

① choose a grid of a values.

② Compute CV error for each X (K-fold).

③ SelectX for which CV ever is smallest for return to stpQ).

& Fit model using all training data and selected X.

predictor
Note : still important to scale variables for lasso.
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33 Dimension Reduction Methods Dimension Reduction Methods
So far we have controlled variance in two ways:

We now explore a class of approaches that

We refer to these techniques as dimension reduction methods.

① Using a subset of original variables

- best subst
,

forward selection,
lasso

② shrinkage of coefficients towrds zero

- ridge ,
lasso.

These methods all defined usingorginal predictor variables X
. 1--Xp

&ansform predictors

& then fit least squares using transformed variables ·

① Let E
, .., Zay represent MSP linear combinations of our original predictors.

Zm=im X:

for constants Pim
, --, Ppm ,

m =
. . . . M .

② Fit the linear regression model using least squares

Y
= fo+ EnZim + Ei i= , ..

na
regressionefficients

If Dim chosen well
, this canoutperform least squares (on X..--,Xp) .
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The term dimension reduction comes from the fact that this approach reduces the problem
of estimating  coefficients to the problem of estimating  coefficients where 

.

Dimension reduction serves to constrain , since now they must take a particular form.

All dimension reduction methods work in two steps.

p + 1 M + 1
M < p

βj

↑
BosBis -- Sp

&
Gostis--- OM

Note :

im Pim
def'n

of Zim = Bili

Bj= OmP

=> special case of original linear regression model
.
(with Bj construined).

↳ can bius officient estimates

↳ if p>n /or pun) selecting M p

can reduce variance.

① transform predictors

② fit model using M transformed predictors from O (OLS].

The selection of Jim's can be done in multiple ways.
We will talk about 2.
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3.3.11 Principle Component Regression Principle Component Regression

Principal Components Analysis (PCA) is a popular approach for deriving a low-
dimensional set of features from a large set of variables.

The first principal component directions of the data is that along which the obervations
vary the most.

We can construct up to  principal components, where the nd principal component is a
linear combination of the variables that are uncorrelated to the first principal component
and has the largest variance subject to this constraint.

p 2

(PCR)
.

to
choose

How ,E y
cone

PCA is an supervised approach for reducing the dimension of an nxp data matrix X.

All

The 1st principal components are obtained byospecting the data into the

↑
1st PC direction.

!
a point is projected on to a line by finding the point on

the line that is closest to the point .

it
out of every possible linear combination of X

,
and X2 such that P=2 = 6

,
choose so that

Var [0(x1 -X1) + 02(x) -*2)] is maximized
. = Zin = On;[2)+ (7/zi -[Tz) for i = 1

, ..,
n .

-Therepicipal

oupelectionssto
1st PC diato !

= dimensionwhich data vay

1st PCection along
re most

directio I
endpe

& ↑
↓

↳ projected onto PC directions .

The 1st PC contains the most information- ptr PC untains the least.
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The Principal Components Regression approach (PCR) involves

1. 

2. 

Key idea:

In other words, we assume that the directions in which  show the most
variation are the directions that are associated with .

How to choose , the number of components?

Note: PCR is not feature selection!

X1, … , Xp

Y

M

Construct first M principal components , ... EM

fit a linear regression model w/ E
, - > Em as predictors in OLS.

Often a small # of PC sufice to explain most of the variability in thedata
,

as well

as the relationship w/ the response
Cre hope).

This is not guaranteed to be true
,

but often works well in practice.

If the assumption holds
, PCR will lead to better results than OLS on X

. c - -sXP because we we mitigating overfitting.

M can be thought of as atuning parameter => use CV to choose !

as M &
p ,

PCR- > OLS =X A bins but variance
,

will see the U-shape in the test MSE.

each of the M principal components is a liner combination of all p original features !

=> while PCR works well to reduce variance,
it does not produce a sparse model.

more like ridge then lasso.

*NOTE* recommed standardize predictors X
1

-/ Xp to each have st
.

dev = I before getting PCs.
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3.3.22 Partial Least Squares Partial Least Squares

The PCR approach involved identifying linear combinations that best represent the
predictors .

Consequently, PCR suffers from a drawback

Alternatively, partial least squares (PLS) is a supervised version.

Roughly speaking, the PLS approach attempts to find directions that help explain both the
reponse and the predictors.

The first PLS direction is computed,

To identify the second PLS direction,

As with PCR, the number of partial least squares directions is chosen as a tuning
parameter.

X1, … , Xp

(PLS)
.

directions

-

We identified these directions in an unsupervised way (Y not had to find directions).

There is no guarantee the directions that best explain the predictors will also be best directions to

explain relationshipul response !

- still dimension reduction

① identify new features E
, )-> Em liver combinations of features

② fit OLS using transformed predictors .

PLS also uses Y (not justX) to find liver combinations of X1 -sXp (i
.
e . find Aims--spm m= -- > M).

Pinea
combinations.

-

-

① standardize the p predictors (all have st. dev
.

=1).

& Set each Oj , equal to slope coeficient from simple liner regression YrX;

"proportion
Since the coeficient from SLR of YoX; is < Cor(Y

, Xi)
,

PLS places highest height
on variables most strongly related to response .

& regress each predictor X
1. -Xp on Ep (X;E

,) and take residuals (rij =Xis-is )

② Compute Ea by setting each P2 equal tothe cosepiet from SLRYvr;
< residuals from

Step 0.

The residuals r
, -- Up I remaining information not

explained
by 1st PLS directiona

directions,

- can repeat to get M

-

=> CV !

Generally , standardize the predictors andresponse before performing PLS.

In practice PLS usually performs no better then ridge or PCR
.

↳ supervised nature of problem does reduce bins
,

but alsoafter increases variance -> not always better.
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44 Considerations in High Dimensions Considerations in High Dimensions
Most traditional statistical techniques for regression and classification are intendend for
the low-dimensional setting.

In the past 25 years, new technologies have changed the way that data are collected in
many fields. It is not commonplace to collect an almost unlimited number of feature
measurements.

Data sets containing more features than observations are often referred to as high-
dimensional.

-

E

nxp

This is because throughout the history of the field
,

the balk of scientific problems requiring statistics havebeen how dimensional

O
-

p very large

But I can still be small due to cost
, sample availability ,

etc.

e
. g.

Consider predicting cop yield but now you can sequence the genome of the corn

species you are planting.

-

-

classical approaches (like OLS) are not appropriate in this setting
.

why? bias-varie trade-off => over fiting !

= he need to be extra careful when
nup or nup.
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What can go wrong in high dimensions? going to talk about least squares ,
but same issues arise

for logistic regression ,
LDA , etc.

If p is as large orlager than n
, regardless of if there is a relationship br Y and I

,
OLs

will yield a set of coefficients that result in a perfect fit totraining data => residues = 0.

n= 20
, p = /( + intercept) n > p = not perfetfitn = 2

,
p = / (+ intercept) n = ref

.
At = perfect fir

overfitting.

the resulting model
will most likely
perform poorly on

- test data!

Simulated data wh n = 20 and performed regression of between 1 and 20 features .

features were generated wi NO Relationship to response !

--
increases even though no

- frainity MSE deceases

relationship .

this plot is wrory.
even trough no relationship.

test USE never good Note: we saw ways to adjust

because not a good predictive training RSS to better reflectfest RISS :

Cp , BIC/AIC, adjusted R2
fit .

in high dimensional setting (p[n),

we cannot computethese.

= We must be very careful when analyzing data / many predictors.

Always Consider performace on independent test data set.
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Many of the methods that we’ve seen for fitting less flexible models work well in the high-
dimension setting.

1. 

2. 

3. 

When we perform the lasso, ridge regression, or other regression procedures in the high-
dimensional setting, we must be careful how we report our results.

-

↓eypoints :

regularization
or shrinkage important in high-dimensional problems.

tuning parameter selection is critical for good predictive perfmace.

The test error tends to increase as pr , unless the additional features are actually associated wh response .

& due to curse of dimensionality.

adding addition signal features can improve model performance.

In the high dimensional setting , itis more likely that predictors will be correlated.

=> some variables could be written as linear combinations of other variables
.

This means we can never really know if any are by predictive of the response .

=>We can never identify theest variables to include

at best
,

we can only hope to assign large regression coeficients to variable that are highly
created to viables that are truly predictive of the response.

* =>
When we use lasso/ feature solution

,
we should be dear we have identified one of

many possible models for predicting the response.
-

should be validated of independent replication.

* also important to reportterors not training errors/R2.


