
Chapter 6: Linear Model Selection &
Regularization
In the regression setting, the standard linear model is commonly used to describe the rela-
tionship between a response  and a set of variables .

The linear model has distinct advantages in terms of inference and is often surprisingly
competitive for prediction. How can it be improved?

We can yield both better prediction accuracy and model interpretability:
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1 Subset Selection
We consider methods for selecting subsets of predictors.

1.1 Best Subset

To perform best subset selection, we �t a separate least squares regression for each possi-
ble combination of the  predictors.

Algorithm:

We can perform something similar with logistic regression.

1.2 Stepwise Selection

For computational reasons, best subset selection cannot be performed for very large .

Stepwise selection is a computationally ef�cient procedure that considers a much smaller
subset of models.

Forward Stepwise Selection:
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Backward Stepwise Selection:

Neither forward nor backwards stepwise selection are guaranteed to �nd the best model
containing a subset of the  predictors.

1.3 Choosing the Optimal Model
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2 Shrinkage Methods
The subset selection methods involve using least squares to �t a linear model that contains
a subset of the predictors. As an alternative, we can �t a model with all  predictors using
a technique that constrains (regularizes) the estimates.

Shrinking the coef�cient estimates can signi�cantly reduce their variance!

2.1 Ridge Regression

Recall that the least squares �tting procedure estimates  using values that
minimize

Ridge Regression is similar to least squares, except that the coef�cients are estimated by
minimizing

The tuning parameter  serves to control the impact on the regression parameters.
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The standard least squares coef�cient estimates are scale invariant.

In contrast, the ridge regression coef�cients  can change substantially when multiplying
a given predictor by a constant.

Therefore, it is best to apply ridge regression after standardizing the predictors so that
they are on the same scale:

β̂
R

λ



6 2 Shrinkage Methods

Why does ridge regression work?
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2.2 The Lasso

Ridge regression does have one obvious disadvantage.

This may not be a problem for prediction accuracy, but it could be a challenge for model
interpretation when  is very large.

The lasso is an alternative that overcomes this disadvantage. The lasso coef�cients 
minimize

As with ridge regression, the lasso shrinks the coef�cient estimates towards zero.

As a result, lasso models are generally easier to interpret.

p

β̂
L

λ



8 2 Shrinkage Methods

Why does the lasso result in estimates that are exactly equal to zero but ridge regression
does not? One can show that the lasso and ridge regression coef�cient estimates solve the
following problems

In other words, when we perform the lasso we are trying to �nd the set of coef�cient esti-
mates that lead to the smalled RSS, subject to the contraint that there is a budget  for
how large  can be.
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2.3 Tuning

We still need a mechanism by which we can determine which of the models under consid-
eration is “best”.

For both the lasso and ridge regression, we need to select  (or the budget ).

How?
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