
Chapter 7: Moving Beyond LinarityChapter 7: Moving Beyond Linarity
So far we have mainly focused on linear models.

Previously, we have seen we can improve upon least squares using ridge regression, the
lasso, principal components regression, and more.

Through simple and more sophisticated extensions of the linear model, we can relax the
linearity assumption while still maintiaining as much interpretability as possible.

O

hear models are simple to describe and implement.

Advantage : interpretation/inference.

disadvantage : can have limited predictive performance because linearity is always an approximation.

improvement obtained by reducing complexity of OLS => lowering variance.

still a lineer model ! Can only be improved somuch.

-> extensions of lineer
mecht

.

&Polynomia regression : adding extra predictors that are original variables raised to a power.

we'retha e .g .

cubic regression uss X
,

X2
,

X* as predictors , mag . y
= po + B,

X +2x
*

+ B3X3 + &
.

- non-linear fit

- large powers an lead to strange shapes (especially near the boudary).

② epfunctions : not the range of a variable into K distinct regions to produce
a categorial variable. fit a a piecewisebnstant function to X.

③ Regressionsplices :Moreflexiblethapolynomidststopfactorsextendsbotha
tin each region

Polynomias are constrained so that they he smoothly joined.

⑦Generalized additive models (GAM) : extends above to deal of multiple predictors.

We will startof predicting y on X (p= 1) and extend to multiple.

Note: We can talk regression or classification
,

e .g . logistic regussion : P(YFIX)-XBx



2

11 Step Functions Step Functions
Using polynomial functions of the features as predictors imposes a global structure on the
non-linear function of .

We can instead use step-functions to avoid imposing a global structure.

For a given value of , at most one of  can be non-zero.

X

X C1, … , CK

-

i

.e ,
break range of X into bins and fit a different constant in each bin.

details : I create out points C. ..

, i in the range of X.

② Construct K + 1 new variables

Co(x) : #( X < C
, )

Note for any X,

((x) = 1) EX(2) indicator functions since I must be in exactly 1 interrel.

i & "dunmy variables"

CoGx) + G(x) +... + (x(x) = 1
.

G(X) = #)( = X)
-leave ot Co(X) because it is equivalent

to fitting an intercept
.

③ Use OLS to fit linear model using C
, (x) ...> ((X)

Y = Po + B ,
C

,
(x) +... + px((x) + E

.

-cx(x)

When XXC
,

=> all predictors G .
-- , E = 0

=> Bo interpreted as mean value for y when XC.

B; represents the average increase in mean response for XE[Cj , <+ 1) relative to X G
.

We can also fit the logistic regression model for classification :

new interpretation of B's
P(y= 11X)=B relateto
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Example: Wage data.

yearyear ageage maritlmaritl racerace educationeducation regionregion jobclassjobclass healthhealth health_inshealth_ins logwagelogwage wagewage

2006 18
1.
Never
Married

1.
White

1. < HS
Grad

2.
Middle
Atlantic

1.
Industrial

1.
<=Good 2. No 4.318063 75.04315

2004 24
1.
Never
Married

1.
White

4. College
Grad

2.
Middle
Atlantic

2.
Information

2.
>=Very
Good

2. No 4.255273 70.47602

2003 45 2.
Married

1.
White

3. Some
College

2.
Middle
Atlantic

1.
Industrial

1.
<=Good 1. Yes 4.875061 130.98218

2003 43 2.
Married

3.
Asian

4. College
Grad

2.
Middle
Atlantic

2.
Information

2.
>=Very
Good

1. Yes 5.041393 154.68529

O

13000 male workers in Mid-Atlantic region

.*

fitted value of -> -
I Iaea Cz= 60.

increasing
logistic regression modeling prob, of beig a high

trend here, earner (Wage > 250k) .

using step function 2/ Knots at X =30
,

60.

Unless there are natural breakpoints in the predictor,

piecewise constant functions can miss trends.
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22 Basis Functions Basis Functions
Polynomial and piecewise-constant regression models are in fact special cases of a basis
function approach.

Idea:Idea: 

Instead of fitting the linear model in , we fit the model

Note that the basis functions are fixed and known.

We can think of this model as a standard linear model with predictors defined by the basis
functions and use least squares to estimate the unknown regression coefficients.

X

-

have a family of functions or transformations that can be applied to a variable X

b
,
(x)

, bz(x), - . .
, bk(x).

Yi
=

Bot B, b
, (x) +... +Bb() + Ei

(we choose tem).
-

e .g. Polynomial regression : bj) = x
,
j = 1 --,

d

e . g. Step functions : bj() = #(c; [xi <j+)

-

- -

=>We cause all our inference tools for linear models
, e . g . se(B ; ) and F-statistics for model

significance.

Many alternatives exist for basis functions :

e . g.
Wardets

,
Forrier series

, regression splines (next).
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33 Regression Splines Regression Splines
Regression splines are a very common choice for basis function because they are quite
flexible, but still interpretable. Regression splines extend upon polynomial regression and
piecewise constant approaches seen previously.

3.13.1 Piecewise Polynomials Piecewise Polynomials

Instead of fitting a high degree polynomial over the entire range of , piecewise
polynomial regression involves fitting separate low-degree polynomials over different
regions of .

For example, a pieacewise cubic with no knots is just a standard cubic polynomial.

A pieacewise cubic with a single knot at point  takes the form

Using more knots leads to a more flexible piecewise polynomial.

In general, we place  knots throughout the range of  and fit  polynomial
regression models.

X

X

c

L X L + 1

-
-

starwith

-

-

y
singlecutpoint.

i

. e . fit two different polynomials to data : 1 on subset for > C and a second on subset for=C .

①
-

-

y =

Ba + Bri + Bri +B + &i if ki <eE
Boz + Bizki + Baz+ Baz + E if Xizc

each polynomial can be fit using least squares.

If we place (knots => fit L + 1 polynomials (doesn't have to be mbic).

This leads to (d +1) (L+1) degrees of freedom in the model

(Aparameters to fit o complexity/flexibility).
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3.3.22 Constraints and Splines Constraints and Splines

To avoid having too much flexibility, we can constrain the piecewise polynomial so that the
fitted curve must be continuous.

To go further, we could add two more constraints

In other words, we are requiring the piecewise polynomials to be smooth.

Each constraint that we impose on the piecewise cubic polynomials effectively frees up one
degree of freedom, bu reducing the complexity of the resulting fit.

The fit with continuity and 2 smoothness contraints is called a spline.

A degree-  spline is d

-

i.e . there cannot be a jump at the knots.

& first derivatives of the piecewise polynomids are continuous at the knots

② 2nd derivatives of the piecewise polynomials are continuous at the knots.

-

- J

T
-

a piecewise degree-d polynomial w/ continuity in derivates up to degreed-1 at

each knot.

grump -
still asharet

C= 50

piecewise cubic polynomial.
piecewise cubic with continuity cubic spline

ets + ets 1st and 2nd derivatives (smooth).
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3.3.33 Spline Basis Representation Spline Basis Representation

Fitting the spline regression model is more complex than the piecewise polynomial
regression. We need to fit a degree  piecewise polynomial and also constrain it and its 

 derivatives to be continuous at the knots.

The most direct way to represent a cubic spline is to start with the basis for a cubic
polynomial and add one truncated power basis function per knot.

Unfortunately, splines can have high variance at the outer range of the predictors. One
solution is to add boundary constraints.

d

d − 1
up

to

We can use the basis mode to represent a regression spline.

·
.

gc
petsyi = Bo + Bb

, )+Babex)tPb

for appropriate functions b
,

1 .., PL+3. ↓
,

x,
3

h(x , c) = (x-c)* = [0c if <x2 where c is the knot.
0 . W.

=> Yi = Bot Baki + Ba + By+ Bijh(, (j) + Ei

seehomework-> This will lead to discontinuity in only the 3rd decirative at each 2 with continuous first and
second derivatives and continuity at each Cj.

&f : L 4 (cubic splie / L knots) ·

-

-
e. X is small or large .

require function to be linee at the boundary (Where X is smaller then the smallest knot or bigger the

Y
the biggest knot)

"natural spline"

additional constraint produces more stable estimates at the boundaries.
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3.3.44 Choosing the Knots Choosing the Knots

When we fit a spline, where should we place the knots?

How many knots should we use?

3.3.55 Comparison to Polynomial Regression Comparison to Polynomial Regression

Regression splice is most flexible in regions that containalot of knots (coefficients can change more rapidly) .

=> place knots where we think relationship changes rapidly (less stable)·

more common in practice : place them uniformly
to do this

,
choose desired degrees of freedom (flexibility) + use software to automatically place knots at

uniform quantiles of the data.

=) how many degrees of freedom should we use?

Use CV ! Choose I that gives smallest CV ere !

alternative : penalized splines (splines + lasso).

Regression splines often gives superior results to polynomial regression.

Polynomial regression must use high dege to achieve flexible fot Je. g . XX),
but regression splines introduce flexibility through knots (but fixed degree) => more stability (esp .

at boodes).

lynomiah w

%you6)

p
natural

cubic spline
w)df = 16

extra flexibility of polynomial produces undesirable

result at the bounday but splie of scre flexibility
still reasonable.
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44 Generalized Additive Models Generalized Additive Models
So far we have talked about flexible ways to predict  based on a single predictor .

Generalized Additive Models (GAMs) provide a general framework for extending a
standard linear regression model by allowing non-linear functions of each of the variables
while maintaining additivity.

4.4.11 GAMs for Regression GAMs for Regression

A natural way to extend the multiple linear regression model to allow for non-linear
relationships between feature and response:

Y X

These approaches can be seen as extensions of simple liver regression

Y= Bot B,
X+ E

.

&
flexibly predicting y on the basis of several predictors X

....,Xp

-
still additive models

↳ Ca also be used fordassification using logistic regression.

-

linear regression : Zi
= Bot Bit ... + BpDip + E:

idea : replace each linear component pili; with a smooth non-liner function :

=> GAM : gi =Bot+
=

Bo + f
,
(x :) + +ziz)+... + fp(ip)+ E;

"additive" because we calculate a separate fi for each X; and d them together.

possibilities for fj :

- identity /leads to lines regression).

- polynomial
- regression splines
-

smoothing splices,
local lineer regression -

-> see textbook ch
.

7
.
5 - 7.

6
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The beauty of GAMs is that we can use our fitting ideas in this chapter as building blocks
for fitting an additive model.

Example: Consider the Wage data.

Wage =

Bo + f
, (year) + fz(age) + fo(education] + E

where fo is natural spline w 4 of

fo is natural spline w S of

fy is identify of dummy variables created from education.

easy to
fit least squares by choosing appropriateisfunctions.



4.1 GAMs for Regression 11

Pros and Cons of GAMs
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4.4.22 GAMs for Classification GAMs for Classification

GAMs can also be used in situations where  is categorical. Recall the logistic regression
model:

A natural way to extend this model is for non-linear relationships to be used.

Example: Consider the Wage data.

Y


