
Chapter 8: Tree-Based MethodsChapter 8: Tree-Based Methods
We will introduce tree-based methods for regression and classification.

The set of splitting rules can be summarized in a tree  “decision trees”.

Combining a large number of trees can often result in dramatic improvements in prediction
accuracy at the expense of interpretation.

Credit: http://phdcomics.com/comics.php?f=852

Decision trees can be applied to both regression and classification problems. We will start
with regression.
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11 Regression Trees Regression Trees
Example:Example: We want to predict baseball salaries using the Hittters data set based on
Years (the number of years that a player has been in the major leagues) and Hits (the
number of hits he made the previous year).

The predicted salary for players is given by the mean response value for the players in that
box. Overall, the tree segments the players into 3 regions of predictor space.
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We now discuss the process of building a regression tree. There are to steps:

1. 

2. 

How do we construct the regions ?

The goal is to find boxes  that minimize the RSS.
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R1, … , RJ

R1, … , RJ

-
quantitative

y

W

Divide theeorspaceat
of possettesfor XiXp

into 5 distinct and non-overlapping regions Ris ...,Rij

Predict

for erry observation that falls into region Ri remake in same prediction ,

te mean of response Y fo training values in j

How to divide the predictor space?

Regions could have any shape but that is to hard (to doo to interpret)-

=> divide predictor space into high dimensional rectangles (or boxes)
mean

response
of

-

-raining
data

in

2 Rj
2

- -Er
Ep:
i-ai)

Unfortunately it is computationally infeasible to solve ·
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-> take adous, seedy approach called y splittily .

we start at Roofthe tree (where all observations belong to a single region) and

successively split tre predictor space .

↳ each split is indicated via membranches down the tree.

at each step of the tree building process, the best split is made atMeticularstep

↳ not looking ahead to make a split that will lead to a better
tree later.
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In order to perform recursive binary splitting,

The process described above may produce good predictions on the training set, but is likely
to overfit the data.

A smaller tree, with less splits might lead to lower variance and better interpretation at
the cost of a little bias.

A strategy is to grow a very large tree  and then prune it back to obtain a subtree.T0
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Algorithm for building a regression tree:

① Use recursive binary splitting to grow a large tree or training data
, stopping only when each

termind mode has fewer Han some
minimum # of observations ,

& Apply cost complexity praving to large tree to set a sequence of best trees
,

as a function of 2
.

③ Use I-fold CV Io choose &

Divide training data into K folds , for each k=1
.... K

(a) repent & 6 & on all but It fold .

(b) evaluate MSPE on data in KH fold as a faction ofa

Areage results for each value of d and pick a to minimize CV error
.

④ Retre subtree from & that corresponds to & from %.
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22 Classification Trees Classification Trees
A classification tree is very similar to a regression tree, except that it is used to predict a
categorical response.

For a classification tree, we predict that each observation belongs to the most commonly
occurring class of training observation in the region to which it belongs.

The task of growing a classification tree is quite similar to the task of growing a
regression tree.

It turns out that classification error is not sensitive enough.

When building a classification tree, either the Gini index or the entropy are typically used
to evaluate the quality of a particular split.
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33 Trees vs. Linear Models Trees vs. Linear Models
Regression and classification trees have a very different feel from the more classical
approaches for regression and classification.

Which method is better?

3.13.1 Advantages and Disadvantages of Trees Advantages and Disadvantages of Trees
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44 Bagging Bagging
Decision trees suffer from high variance.

Bootstrap aggregation or bagging is a general-purpose procedure for reducing the
variance of a statistical learning method, particularly useful for trees.

So a natural way to reduce the variance is to take many training sets from the population,
build a separate prediction model using each training set, and average the resulting
predictions.

Of course, this is not practical because we generally do not have access to multiple training
sets.



4.1 Out-of-Bag Error 9

While bagging can improve predictions for many regression methods, it’s particularly
useful for decision trees.

These trees are grown deep and not pruned.

How can bagging be extended to a classification problem?

4.4.11 Out-of-Bag Error Out-of-Bag Error

There is a very straightforward way to estimate the test error of a bagged model, without
the need to perform cross-validation.



10 4 Bagging

4.4.22 Interpretation Interpretation
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55 Random Forests Random Forests
Random forests provide an improvement over bagged trees by a small tweak that
decorrelates the trees.

As with bagged trees, we build a number of decision trees on bootstrapped training
samples.

In other words, in building a random forest, at each split in the tree, the algorithm is not
allowed to consider a majority of the predictors.

The main difference between bagging and random forests is the choice of predictor subset
size .m
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66 Boosting Boosting
Boosting is another approach for improving the prediction results from a decision tree.

While bagging involves creating multiple copies of the original training data set using the
bootstrap and fitting a separate decision tree on each copy,

Boosting does not involve bootstrap sampling, instead each tree is fit on a modified version
of the original data set.
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Boosting has three tuning parameters:

1. 

2. 

3. 


