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Chapter 8: Tree-Based Methods
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We will introduce tree-based methods for regression and classification.
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The set of splitting rules can be summarized in a tree = “decision trees”.
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Combining a large number of trees can often result in dramatic improvements in prediction

accuracy a ense of inferpretation.

Decision trees can be applied to both regression and classification problems. We will start
with regression.



1 Regression Trees
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The predicted salary for players is given by the mean response value for the players in that "'
box. Overall, the tree segments the players into 3 regions of predictor space.
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We now discuss the process of building a regression tree. There are fo steps:
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4 1 Regression Trees

In order to perform recursive binary splitting,
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The process described above may produce good predictions on the training set, but is likely
to overfit the data.
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Algorithm for building a regression tree:
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2 Classification Trees

A classification tree is very similar to a regression tree, except that it is used to predict a
categorical response.

For a classification tree, we predict that each observation belongs to the most commonly
occurring class of training observation in the region to which it belongs.

The task of growing a classification tree is quite similar to the task of growing a
regression tree.

It turns out that classification error is not sensitive enough.

When building a classification tree, either the Gini index or the entropy are typically used
to evaluate the quality of a particular split.



3 Trees vs. Linear Models

Regression and classification trees have a very different feel from the more classical
approaches for regression and classification.

‘Which method is better?

3.1 Advantages and Disadvantages of Trees



4 Bagging

Decision trees suffer from high variance.

Bootstrap aggregation or bagging is a general-purpose procedure for reducing the
variance of a statistical learning method, particularly useful for trees.

So a natural way to reduce the variance is to take many training sets from the population,
build a separate prediction model using each training set, and average the resulting
predictions.

Of course, this is not practical because we generally do not have access to multiple training
sets.



4.1 Out-of-Bag Error

While bagging can improve predictions for many regression methods, it’s particularly
useful for decision trees.

These trees are grown deep and not pruned.

How can bagging be extended to a classification problem?

4.1 Out-of-Bag Error

There is a very straightforward way to estimate the test error of a bagged model, without
the need to perform cross-validation.



10 4 Bagging

4.2 Interpretation



® Random Forests

Random forests provide an improvement over bagged trees by a small tweak that
decorrelates the trees.

As with bagged trees, we build a number of decision trees on bootstrapped training

samples.

In other words, in building a random forest, at each split in the tree, the algorithm is not
allowed to consider a majority of the predictors.

The main difference between bagging and random forests is the choice of predictor subset

size m.
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6 Boosting

Boosting is another approach for improving the prediction results from a decision tree.

While bagging involves creating multiple copies of the original training data set using the
bootstrap and fitting a separate decision tree on each copy,

Boosting does not involve bootstrap sampling, instead each tree is fit on a modified version
of the original data set.
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Boosting has three tuning parameters:
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