Chapter 9: Support Vector Machines
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The support vector machine is an approach for classification that was developed in the
computer science community in the 1990s and has grown in popularity.
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The support vector machine is a generalization of a simple and intuitive classifier called the
maximal margin classifier.
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Support vector machines are intended for binary classification, but there are extensions for
more than two classes. teeoited raponge
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1 Maximal Margin Classifier

In p-dimensional space, a hyperplane is a flat affine subspace of dimension p — 1.

Yo
Z" t In 1&;‘mag,bn5) . L\DfJEfPILAC s o £lar L dmoasit el Gu'bf‘«cb - 6 Qe
¥
%\: l'l 3 Mﬁg\g.lp/lﬁl o ‘,Drx,f,la,‘g fg o FM g\ ‘Jhl’\‘l'lﬂ"e )M-LSPEQ. ~ ‘?[(49/
i Wop>3 aUM-Mﬁ'ms/hﬁrzb,( ). cmafm,ﬂ'ulbuif shh < fat p-l din- guispm,

The mathematical definition of a hyperplane is quite simple,
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This can be easily extended to the p-dimensional setting.
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We can think of a hyperplane as dividing p-dimensional space into two halves.
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1.1 Classificaton Using a Separa...

1.1 Classificaton Using a Separating Hyperplane

Suppose that we have a n x p data matrix X that consists of n training observations in p-

dimensional space.
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and that these observations fall into two classes.
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‘We also have a test observation.
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4 1 Maximal Margin Classifier

Suppose it is possible to construct a hyperplane that separates £the training observations
perfectly according to their class labels.
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Then a separating hyperplane has the property that
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If a separating hyperplane exists, we can use it to construct a very natural classifier:
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That is, we classify the test observation z* based on the sign of
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We can also use the magnitude of f(z*).
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1.2 Maximal Margin Classifier 5

1.2 Maximal Margin Classifier

If our data cah Ye perfectly separated using a hyperplane, then there will exist an infinite
number of such hyper’planes.b ) |
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A natural choice for which hyperplane to use is the maximal margin hyperplane (aka the
optimal separating hyperplane), which is the hyperplane that is farthest from the training
observations.
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We can then classify a test observation based on which side of the maximal margin
hyperplane it lies — this is the maximal margin classifier.
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6 1 Maximal Margin Classifier

We now need to consider the task of constructing the maximal margin hyperplane based
on a set of n training observations and associated class labels.
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The maximal margin hyperplane is the solution to the optimization problem -
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This problem can be solved efficiently, but the details are outside the scope of this course.
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What happens when no separating hyperplane exists?
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2 Support Vector Classifiers

It’s not always possible to separate training observations by a hyperplane. In fact, even if
we can use a hyperplane to perfectly separate our training observations, it may not be

desirable.
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We might be willing to consider a classifier based on a hyperplane that does not perfectly
separate the two classes in the interest of
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The support vector classifier does this by finding the largest possible margin between
classes, but allowing some points to be on the “wrong” side of the margin, or even on the

“wrong” side of the hyperplane.
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8 2 Support Vector Classifiers

The support vector classifier glassifies a test observation depending on which side of the
hyperplane it lies. The hyperplane is chosen to correctly separate most of the training
observations.
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Once we have solved this optimization problem, we classify z* as before by determining
which side of the hyperplane it lies.
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The optimization problem has a very interesting property.
oWserahons g e Mign O idsle he wargn (o bgerdace) offeed fre hypplane !
=y fe L'JJ%"K‘@{‘

(€. o‘oSuv»hb"‘s et Pl v Gred Q«.\dl_% '“'7’}‘ "9"“’%0/#4 'ﬁ-‘- C"ﬂwf{' Mvo&ca‘ﬁw_[

Jpeplone
o IPr
Observations that lie directly on the margin or on the wrong side of the margin are called
support vectors.
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The fact that only support vectors affect the classifier is in line with our assertion that C
controls the bias-variance tradeoff.
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Because the support vector classifier’s decision rule is based only on a potentially small
subset of the training observations means that it is robust to the behavior of observations
far away from the hyperplane.
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3 Support Vector Machines

The support vector classifier is a natural approach for classification in the two-class
setting...
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We’ve seen ways to handle non-linear classification boundaries before.

In the case of the support vector classifier, we could address the problem of possible non-

linear boundaries between classes by enlarging the feature space.

Then our optimization problem would become
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The support vector machine allows us to enlarge the feature space used by the support
classifier in a way that leads to efficient computation.

It turns out that the solution to the support vector classification optimization problem
involves only inner products of the observations (instead of the observations themselves).

It can be shown that

Now suppose every time the inner product shows up in the SVM representation above, we
replaced it with a generalization.
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3 Support Vector Machines




4 SVMs with More than Two Classes

So far we have been limited to the case of binary classification. How can we exted SVMs
to the more general case with some arbitrary number of classes?

Suppose we would like to perform classification using SVMs and there are K > 2 classes.

One-Versus-One

One-Versus-All
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